Artificial neural network-based error compensation procedure for low-cost encoders
نویسندگان
چکیده
منابع مشابه
Artificial Neural Network-based error compensation procedure for low-cost encoders
An Artificial Neural Network-based error compensation method is proposed for improving the accuracy of resolver-based 16-bit encoders by compensating for their respective systematic error profiles. The error compensation procedure, for a particular encoder, involves obtaining its error profile by calibrating it on a precision rotary table, training the neural network by using a part of this dat...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کاملLearning Solving Procedure for Artificial Neural Network
It is expected that progress toward true artificial intelligence will be achieved through the emergence of a system that integrates representation learning and complex reasoning (LeCun et al. 2015). In response to this prediction, research has been conducted on implementing the symbolic reasoning of a von Neumann computer in an artificial neural network (Graves et al. 2016; Graves et al. 2014; ...
متن کاملLattice-Based Recurrent Neural Network Encoders for Neural Machine Translation
Neural machine translation (NMT) heavily relies on word-level modelling to learn semantic representations of input sentences. However, for languages without natural word delimiters (e.g., Chinese) where input sentences have to be tokenized first, conventional NMT is confronted with two issues: 1) it is difficult to find an optimal tokenization granularity for source sentence modelling, and 2) e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Measurement Science and Technology
سال: 2009
ISSN: 0957-0233,1361-6501
DOI: 10.1088/0957-0233/21/1/015112